翻訳と辞書
Words near each other
・ Erdweg
・ Erdzhanik Avetisyan
・ Erdély TV
・ Erdélyi
・ Erdélyi Bastion
・ Erdélyi Napló
・ Erdöl-Erdgas-Museum Twist
・ Erdös-Rényi Prize in Network Science
・ Erdőbénye
・ Erdőfalva
・ Erdőhorváti
・ Erdőkertes
・ Erdőkürt
・ Erdős
・ Erdős arcsine law
Erdős cardinal
・ Erdős conjecture on arithmetic progressions
・ Erdős distinct distances problem
・ Erdős number
・ Erdős Prize
・ Erdős space
・ Erdősmecske
・ Erdősmárok
・ Erdős–Anning theorem
・ Erdős–Bacon number
・ Erdős–Borwein constant
・ Erdős–Burr conjecture
・ Erdős–Diophantine graph
・ Erdős–Faber–Lovász conjecture
・ Erdős–Fuchs theorem


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Erdős cardinal : ウィキペディア英語版
Erdős cardinal
In mathematics, an Erdős cardinal, also called a partition cardinal is a certain kind of large cardinal number introduced by .
The Erdős cardinal is defined to be the least cardinal such that for every function there is a set of order type that is homogeneous for (if such a cardinal exists). In the notation of the partition calculus, the Erdős cardinal is the smallest cardinal such that
:
Existence of zero sharp implies that the constructible universe satisfies "for every countable ordinal , there is an -Erdős cardinal". In fact, for every indiscernible satisfies "for every ordinal , there is an -Erdős cardinal in (the Levy collapse to make countable)".
However, existence of an -Erdős cardinal implies existence of zero sharp. If is the satisfaction relation for (using ordinal parameters), then existence of zero sharp is equivalent to there being an -Erdős ordinal with respect to . And this in turn, the zero sharp implies the falsity of axiom of constructibility, of Kurt Gödel.
If κ is -Erdős, then it is -Erdős in every transitive model satisfying " is countable".
==References==

*
*
*
*


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Erdős cardinal」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.